Broadband chaos generation and prototypes of chaos-based OTDR and RNG

Anbang Wang, Mingjiang Zhang, and Yuncai Wang

Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education and
Shanxi Province; College of Physics and Optoelectronics,
Taiyuan University of Technology, Taiyuan 030024, China
E-mail: wanganbang@tyut.edu.cn, zhangmingjiang@tyut.edu.cn, wangyc@tyut.edu.cn

Abstract—After secure communications [1], chaos in semiconductor lasers has triggered considerable development is random number generator (RNG) [2-4] and range finding including radar [5] and optical time-domain reflectometer (OTDR) [6]. Benefiting from the bandwidth of laser chaos, the rate of RNG can reach to several Gb/s (note the off-line rate can be 100-300 Gb/s), and the spatial resolution of range finding can be improved to several centimeters [4, 5]. From the viewpoint of practical applications, it is important to provide evidence of robust and stable operation of such systems. Therefore, we demonstrate here two prototypes of OTDR and RNG based on chaotic semiconductor laser. As shown in Fig.1, using a distributed-feedback semiconductor laser with optical feedback as chaotic source, the prototype chaotic OTDR achieves a range-independent resolution of 4cm and measurable distance of about 70km. Figures 2(a)-2(c) shows the schematic setup of our RNG prototype and its photos. The RNG prototype can yield a random bit stream with a rate up to 4.5 Gb/s [7]. The measured waveform and eye pattern are plotted in Figs. 2(d) and 2(e).

In addition, there is a vital limitation to the generation rate of RNG as well as the spatial resolution of OTDR, i.e. the bandwidth of chaotic laser which is normally limited to several gigahertzes by laser relaxation oscillation. Here we review three methods of generation of broadband chaos we proposed recently [8-10], listed in Fig. 3. The bandwidth of laser chaos can be improved 3-4 times, and the widest spectrum extending to 40GHz was achieved. It is believed that these results can greatly promote applications of laser chaos.

Keywords: chaos; semiconductor laser; optical time domain reflectometry; random number generation

Figure 1. (a) Photo of COTDR prototype, (b) experimental results of a fiber connector and a breakpoint, and (c) of a breakpoint at 72km measured by the COTDR.

Figure 2. (a) Schematic setup of our RNG prototype based on chaotic laser, (b), (c) photos of RNG prototype, (d) and (e) are the measured waveform and eye pattern of an output of 4.5Gb/s random bitstream.

Figure 3. Three methods to generate broadband chaos using semiconductor lasers: (a) optical injection, (b) dual-wavelength optical injection, and (c) chaotic-light-injection fiber ring resonator. Left: sketched setups; right: representative experimental results.

ACKNOWLEDGMENT

This work was supported by the National Natural Science Foundation of China (grants Nos. 60908014, 60927007, 61108027, and 612278121), by the Natural Science Foundation for Young Scientists (200902103), by the Key Science and Technology Program (20100321055-02) of Shanxi Province, by the Shanxi Scholarship Council of China, and by the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi, China (OIT).
REFERENCES


